Recombinant anti-polyamine antibodies: identification of a conserved binding site motif.

نویسندگان

  • J S Johnston
  • D S Athwal
چکیده

Polyamines are small linear polycations found ubiquitously in eukaryotic cells. They are involved in nucleic acid and protein synthesis and rises in cellular polyamine levels have been correlated with cell proliferation. Antibodies to these molecules have potential as prognostic indicators of disease conditions and indicators of treatment efficacy. Antipolyamine monoclonal antibodies of differing but defined specificities have been generated in our laboratory using polyamine ovalbumin conjugates as immunogens. These antibodies show small but significant cross reactivities with other polyamine species; IAG-1 cross reacts with spermidine (8%), JAC-1 with spermine (6%) and JSJ-1 with both putrescine (11%) and spermine (6%). We have rescued and sequenced the heavy and light chain variable regions of all three of these antibodies. While the light chains of two antibodies, IAG-1 and JSJ-1, were 93% homologous at the amino acid level, none of the heavy chains displayed any significant sequence homology. However, computer-generated models of all three antibody binding sites revealed a three-dimensionally conserved polyamine binding site motif. The polyamine appears to bind into a negatively charged cleft lined with acidic and polar residues. The cleft is partially or completely closed at one end and the specificity of the interaction is determined by placement of acidic residues in the cleft. Aromatic residues contribute to polyamine binding interacting with the carbon backbone. The polyamine-binding motif we have identified is very similar to that observed in the crystal structure of PotD, the primary receptor of the polyamine transport system in Escherichia coli.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloning of conserved regions of nontypeable Haemophilus influenzae hmw1 core binding domain

Colonization of nontypeable Haemophilus influenzae (NTHi) in nasopharynx causes respiratory tract disease. In 80% of clinical isolates, HMW proteins are the major adhesions and induce protective antibodies in the hosts. Therefore, it can be used as a vaccine candidate. The aim of this study is designing and cloning of the conserved regions of NTHi hmw1 core binding domain.In this study, the sta...

متن کامل

Identification and characterization of a NBS–LRR class resistance gene analog in Pistacia atlantica subsp. Kurdica

P. atlantica subsp. Kurdica, with the local name of Baneh, is a wild medicinal plant which grows in Kurdistan, Iran.  The identification of resistance gene analogs holds great promise for the development of resistant cultivars. A PCR approach with degenerate primers designed according to conserved NBS-LRR (nucleotide binding site-leucine rich repeat) regions of known disease-resistance (R) gene...

متن کامل

Production of Monoclonal Antibody against Prokaryotically Expressed G1 Protein of Bovine Ephemeral Fever Virus

Epitope-G1 of bovine ephemeral fever virus (BEFV) G glycoprotein has been genetically and antigenically conserved among various isolates of BEFV and only reacts with anti-BEFV neutralising antibodies. Therefore, it is a candidate antigen for development of the enzyme linked immunosorbent assay (ELISA) for serological identification bovine ephemeral fever (BEF)-infected animals. The aim of this ...

متن کامل

Construction and Expression of Hepatitis B Surface Antigen Escape Variants within the "a" Determinant by Site Directed Mutagenesis

Background: The antibody response to hepatitis B surface antigen (HBsAg) controls hepatitis B virus infection. The "a" determinant of HBsAg is the most important target for protective antibody response, diagnosis and immunoprophylaxis. Mutations in this area may induce immune escape mutants and affect the performance of HBsAg assays. Objectives: To construct clinically relevant recombinant muta...

متن کامل

In silico investigation of lactoferrin protein characterizations for the prediction of anti-microbial properties

Lactoferrin (Lf) is an iron-binding multi-functional glycoprotein which has numerous physiological functions such as iron transportation, anti-microbial activity and immune response. In this study, different in silico approaches were exploited to investigate Lf protein properties in a number of mammalian species. Results showed that the iron-binding site, DNA and RNA-binding sites, signal pepti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Protein engineering

دوره 12 6  شماره 

صفحات  -

تاریخ انتشار 1999